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LOGICAL ASPECTS OF QUESTION-ANSWERING BY COMPUTER

J. L. Kuhns

The RAND Corporation, Santa Monica, California

In this paper we will consider the problem of computer-

ized question-answering from the point of view of certain

technical, although elementary, notions of logic. W4e

the work reported herein has general application to the

design of information systems, it is specifically motivated

by the RAND Relational Data File& a data-retrieval system

whose design features were proposed by R. F. Levien and

M. E. Maron (1965, 1966; see also Levien, 1966, and Maron,

1966). This system, for which a prototype has been imple-

mented (Levien, 1969), deals with the retrieval and proces-

sing of information from a large file of reZational sentences.

(In the present version there are about 70,C00 sentences.)

These file items concern factual information oi research in

the field of cybernetics--what Levien and Maron call context

data. By that is meant such information as who wrote what

paper, with what organization someone is affiliated, what
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views of The RAND Corporation or the official opinion or
policy of any of its governmental or private research
sponsors. Papers are reproduced by The RAND Corporation
as a courtesy to members of its staff.This paper was prepared for presentation at the Third

International Symposium on Computer and Information Sciences,
Miami Beach. Florida, 18-20 December 1969.
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conferences were held--and where--and who attended them,

etc.

We will 'not discuss specific details of the system but

rather an abstract version of it.. Our purpose is to demon-

strate how notions in logic can be used to influence the

design of components of an information system. A secondary

purpose is to show how logic can be applied to the analysis

of natural-language. We also hope the audience will benefit

from an elementary exposition of some notions in the theory

of reZations.

2. Overview of an Information System

In Fig. 1 we show a simplified diagram of an informa-

tion system. There are two inputs: data of some sort and

queries--information requirements of users. The problem,

in its broadest outline, is to match an input query to the

batched input data. But this match must be done on a common

ground; that is, botch data and query must be cast into com-

parable strings of symbols. Thus the two inputs are ac-

companied by two representation processes which result in

what we shall call fiZe items and eymbolia questions. At

this stage we leave open the question of the mode of these

auxiliary processes--they may be either manual or automatic.

Neither will we specify the exact form of the input data.

Let us however consider the given expression of the user's

information problem to be a natural-language query. Now

the design of the system should be guided by the ZogicaZ
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anaZysie of such queries rather than an analysis restricted

to traditional grammar. A specific example will illustrate

this idea.

3. Analysis of a Natural-Language Question

Suppose our system is to store bibliographic and re-

lated data on logic, and suppose that an inquirer, wishing

to interrogate the system, poses the question

What books has Reichenbach written? (1)

How can a computerized system answer this?

First let us examine the relationship between the ques-

tion and its answer; i.e., as a relationship between expres-

sions. A member of the set of answering expressions would

be the title 'Elements of Symbolic Logic' because

Reichenbach wrota Elemente of Symbolic Logic (2)

and

Elements of Symbolic Logic is a book (3)

Let us symbolize these two elementary sentences. The first

is analyzed as expressing a relation holding between two in-

dividuals--a person and a written work. In logical notation

this relation can be designated by 'W' associated with two

argument positions. Introducing 'a' and 'b' as symbolic

translations of 'Reichenbach' and 'Elements of Symbolic

Logic', respectively, then (2) receives the symbolic

translation
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aWb (4)

'W' (together with its associated argument positions) is

called a two-pZace predicate and designates a relation; 'a'

and 'b' are argument expresaione, in this case individual

constants, designating individuals. Similarly the sentence

(3) can be symbolized

Bb (5)

where 'B' (with its associated argument position) is a

translation of 'book' and as a one-pZace predicate desig-

nates a property, namely, the property of being a book.

(The concept of one-place predicate is closely related tG

the concept of clasa; thus (5) can also be read

b belongs to the class B (5')

This second, exteneionat, interpretation is especially ap-

propriate for noun phrases such as 'a book' occurring in

(3).]

The method of propoeitional data Btorage as used in

the Relational Data File (Levien and Maron, 1965, 1966)

provides a method for storing sentences which is analogous

to the symbolic translations given above. Thus to store

the sentence (2) the English words are first translated

into computer words (analogous to 'W', 'a', 'b'). Next,

the three computer words art stored in thu file (in uu-

case, a disk file). Finally, a fuurth computer word is

F

.. .. . .. .. . .. ... . ...--..... .............. ... - - - - -..
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used to identify the sentence so stored. Thus, we have

a data line of the design

Similarly the sentence (3) (or (5)1 leads to a data line

having the design

B

with no entry in the second place.

A data baae then consists of two parts: (1) a dic-

tionary of individual constants and predicates (together

called desoriptive names); (2) a collection of elementary,

i.e., atomic sentences, which are certain strings of des-

criptive names.

An example dictionary is shown in Fig. 2 We can

regard it as an inventory of our universe of discourse.

An example file is shown in Fig. 3. This describes

a possible state of the universe of discourse.

Returning to the input question (1), let us give it

a similar symbolic translation. We have three major clesses

of logical "parts of speech" to work with: argumont ex-

pressions, predicates, and logical signs (to be explained).

The result of the analysis of the question will be to

identify the lexical units that correspond to these classes.

.. ..- _ -
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a Reichenbach

b Elemente of Symbolic Logic

c On Meaning

d Russell

e Whitehead

f Principia Mathematica

B (the property of being a) book

P (the property of being a) paper

W wrote (the relation of author-
ship in the broad sense)

Fig. 2--An Example Dictionary

i a W b

2 B b

3 a W c

4 P c

5 d W f

6 e W f

7 B

Fig. 3--An Example File

L
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The argument expressions are 'What' and 'Reichenbach'.

'What' has the status of a variable; we call it an inter-

rogative descriptive variable.2 Everything else in (1) is

a complicated relation-expression; we will refer to it as

'R3 Ibecause it turns out to have three levels of complexity.3

Thus the symbolization must reduce somehow to

x R3 a (6)

Since a principal concern is the possibility of the

automatic creation of symbolic questions, we must be careful

not to overlook any machine-recognizable clues. Thus it will

be helpful to have a symbolism that mirrors the English word

order as much as possible. The relational notation used in

(6) already seems to be a good choice.

Returning to the example question (1), we note that the

candidates for answers are restricted to the class of books.

Thus R3 is a relation with a restricted domain. The opera-

tion for forming this (in a slightly modified notation of

Whitehead and Russell (1950)) is indicated by writing the

predicate which defines the restriction (in this case 'B')

as a left subscript to the relation-expression. Thus we

have

R = R(7)

3 B 2

where R2 is to be further analyzed. (The formal definition

of a relation with restrictef! domain is
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x FR y Dfx.xRy (8)

where '.' is the sign of conjunction.)

:ow R2 is close to the relation W of the example file.

It is not the same however because of the reversal of the

argument expressions. Apparently this is due to the split-

ting of the relation expression in (1) by the individual

constant. The effect is that a proper symbolization re-

quires the use of the converse of a relation. The converse

relation is indicated in English sometimes by the passive

voice. Thus has been written by is the converse of has

written. Sometimes it is indicated by another expression;

for example, child of is the converse of parent of. In

questions, the splitting of the relation expression flags

its appearance. The formal definition of the converse

of R is

xOy = yRx (9)

Thus we have

R = (10)2 1

and, finally,

R= has written (11)

If we identify RI with W of the file, then, by using
(6), (7), (10), (11), the symbolization of (1) becomes

x B a (12)

I
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But let us replace the abbreviations by the English expres-

sions an,! compare the result with the original question.

We have

What books[(has written)') Reichenbach (13)

Note how the analysis closely matches the English word order;

only the second argument expression has been shifted to an-

other position.

By studying a baall collection of natural-language

questions we have derived some general principles of symbol-

ization and then assimilated these principles into a computer

program. The program analyzes an input string--a question--

by applying a series of rewrite rules (explained in the

example to follow). The analysis terminates when either

the entire string has been reduced to the symbol Q' (for

'question') or if no more rules apply. The present program

is written in the IBM 7044/7044 FORTRAN IV language and has

30 rules. The root of the program consists principally of

a large oomputed GO TO statement which directs control to

numbered FORTRAN statements, each heading a body of code

representing a single analysis rule. Each rule is in four

parts: (1) an identification number; (2) a rewrite instruc-

tion, (3) a symbol definition (in case a rewrite involves

an abbreviation); (4) a transfer condition (giving the next

rule).

The output is in two parts: a symbol definition table

which constitutes the analysis of the question; and a
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rewrite table which is for research purposes and gives

the sequence of string modifications.

The printouts for the analysis of question (1) are

shown in Figs. 4 and 5. (In this experimental program the

English words are truncated after six characters.) Figure

4 gives the symbol definition table. The printout is read

from the bottom up. Thus, in line 9, the question is

analyzed as having the form of a variable 'V(1)' followed

by a relational expression 'R(3)' followed by an individual

constant 'C(1)'. (Compare with (6).) R(3) is identified

in line 8 as being a relation with restricted domain (RD);

namely, the converse (CNV) of has written (lines 6, 5, 2)

with domain restricted to the class of books (line 4).

In Fig. 5 we show the rewrite table. String 1 is the

input question. The only input markings we use are asterisks

to set off individual constants. Rule 1 was first applied--

it determined 'what' as an interrogative descriptive vari-

able by a dictionary look-up.

Rule 3 determined the auxiliary 'has'--also by a dic-

tionary look-up. The individual constant 'Reichenbach'

was next recognized (Rule 4) by the input markings. In

the next rule application (Rule 6) we determine the one-

place predicate 'books' not by a dictionary look-up but

by its position between a variable and an auxiliary (this

seems to be a common structure in questions). By Rule 15,

which is next to be applied, we determine the relational

t
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expression by the occurrence of an argument between an

auxiliary and a string withort arguments; this yields the

symbol definition in line 5 of Fig. 4; at this point 'C(l)'

is transferred to the end, and as a part of this transfgrma-

tion the converse is introduced. Rule 16 executes an

abbreviation, as does Rule 18. Rule 17 restricts the domain

because of the adjacency of 'P(1)' with 'R(2)'. Finally,

Rule 27 recognizes string 9 as a permissible form of a

question.

4. Answering the Question

In the transformation of (1) into (13) we have given

a gross semantic anaZlai8 of the natural-language question.

This is meant in the following sense: we have stipulated

that 'has written' corresponds to a relation, 'book' to a

property, 'Reichenbach' to an individual, and 'what' to an

unknown. But to answer the question requires us to have a

trick for representing the finer meanings to a computer.

Philosophy tells us there are two aspects of meaning

to be considered; extension and intension (see Carnap, 1956).

The intension of a one-place predicate is the property

designated by the predicate, and the extension is the class

of things having that property. Similarly the intension

of a wo-place predicate is the relation designated by the

predicate and the extension is the class of ordered pairs

of individuals which stand in that relation.

Now the example file of Fig. 3 gives, relative to our

universe of discourse, the extensions of certain "primitive"
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predicates. Thus the extension of 'W' is given in lines 1,

3, 5, and 6 as ((a,b), (a,c), (d,f), (e,f)); the extension

of 'B' in lines 2 and 7 as {b,f}; and the extension of 'P'

in line 4 aa {c}. For this reason the file is called the

extensionaZ file.

In order to answer the input question (1) he me. nings

of the English phrases must be traced back to these stored

lists. That is, the answer is to be found in the extension-

list of 'B[0]' (a list of pairs) among the entries in the

first members corresponding to 'a' in the second. This

"calculation" can be done by working with arrays; each

logical operator of the symbolic question corresponds to a

certain array manipulation. For example, the array for the

converse W is obtained from the array for W by interchanging

the columns; the arraj for a restriction of domain, say of

R to B, is obtained by deleting those rows in the array for

R whose first place members are not in the array for B.
3

In the foregoing, we have assumed that 'has written'

can be identified with 'wrote' (and hence with 'W'). This

is the intensional aspect of the problem. We must have a

relational sentence stored stating the synonymity of the

two expressions. Similarly we must have ' store of logical

definitions such as (8) (for restriction of domain), and

(9) (for the converse). This second file is called the

intensional file. The dictionary itself can be regarded

as part of the intensional file.
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Synonyms are the simplest example of a more general

Plass of representations of intensiona called meaning

.noetuZatee (Carnap, 1956). These define certain relations

in the terms of more primitive predicates, or express in

jome way relations between relations, or between relations

and properties, or between properties and properties. Con-

si,'Er for example

Did Russell co-author with Whitehead? (14)

The computer analysis of this is given in Figs. 6 and 7.

Th4 input question is analyzed as a sentence (line 8 of

Fig. 6) which is to be affirmed. The analysis reduces to

the meaning of the predicate 'did ci-author with' (line 4

of Fig. 6). Now it is clear that the example file contains

all the information necessary to answer this. The problem

is to relate 'did co-author with' with 'wrote'. This is

done by forming the relative product of W with its converse.

The relative product of two relations R and S, in symbols

'RIS', is defined formally by

x(RIS)y = Df (3z) (xRz.zSy) (15)

where '(Zz)' is the existential quantit-er. Thus we have

did co-author with = W10 (16)

Perhaps we may wish to modify (16) so that no person is

co-author with himself; i.e., we intersect WI with the
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relation of diversity to complete the definition. The

inteneionaZ definition (16) thus relates the meaning back

to the extensional file. j5!
5. Symbolic Questions and Value Sets5 I

We have sean that the problem of answering a question

by computer involvas processing a formula of the predicate

calculus. This formula may either stem from the conversion

of a natural-language question to a symbolic question or it

may be input directly as a formulation of the user's infor-

mation requirement. (For example, in the current version

of the Relational Data File an information requirement is

expressed by means of a special programming language called

INFEREX (see Levien, 1969, pp. 17-23); INFEREX instructions

involve relational sentences which are essentially equivalent

to formulas of the predicate calculus.) We have outlined

the logical relationship between the query and the "answer"

as embedded in the data base. Let us now take a closer

look at tne actual mechanism of the answering process.

The formulas6 to be considered are first classed

according to the presence of free variables. For example,

there are sentence-like expressions such as

Bx.aWx (17)

in which a free variable occurs; and there are formulas

such as

(gx) (dWx.eWx) (18)
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with no free variables (the variable 'x' is bound). The

first is an open sententiaZ formula; the second a closed

sentential formula or simply a sentence. The number of

free variables in a formula is called its degree. Thus

(17) is a formula of degree one, while (18) is of degree

zero.

The "answers" to a question leading to an open formula

such as (17) are those descriptive names which when sub-

stituted for the free variable yield a true formula relative

to the data base. These names comprise what we call the

vaue set of the sentential formula.7

(The value set is analogous to the extension, but the

value set consists of names, while the extension consists

of things. We introduce this new notion for a further

reason. We want the members of a value set to have a

certain form; e.g., in general, we would not want a de-

scription, as for example, 'Reichenbach's 10th book', to be

a member of a value set for this would be counter to our

intuitions regarding the character of an answer. The issue

is further complicated by the fact that although in some

cases the value set coincides with an extension-list for

some predicate, 8 we may want to have a predicate itself

in a value set; e.g., as in "answers" to questions such as

'What relation holds between a and b?' 9 For these reasons

the concept of value set of a sentential formula seems

justified.]
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For a formula of degree zero, i.e., a sentence, we

take its value set (or simply the value) to be an expression

dencting its truth value--say a numeral, 'I' for true, '0'

for false.

Thus we assume a system consisting of a data base and

a sentential formula to be processed. The problem is to

calculate its value set.

Let us now look at a source of difficulty. Suppose

an inquirer asked

Who did not write EZements of Symbolic Logia? (19)

i.e., the symbolic question is

%,(xWb) (20)

where "'' is the negation sign. A human would reject this

question as unreasonable, but what should a machine do with

it? Should it print every name in the dicticnary except

'Reichenbach' or should it someh, prohibit the question?

With directly input sentential formulas the problem is even

worse--there could be mistakes which cause logical combina-

tions leading to nonsense. For example, consider the dis-

junctive formula of degree two:

(xWb) V(yWb) (21)

(where IV' is the sign of logical disjunction). Now any

substitution instance which makes either component of (21)

true will make the entire formula true. Consequently (21)
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leads to a value set of ordered pairs corresponding to the

free variable sequence 'x, y' in which a pair has either

the form '(a, ... )' or the form '(..., a) with any des-

criptive name replacing '...'.

We will attack this problem of "unreasonable" questions

by first defining a precise concept called definite formuZa.

This will then be used to explicate1 0 the vague notion of

"reasonable" question. The basic consideration in our

definition is this: the difficulty with (20), or (21), is

that its value set will change if, without changing the

file, a new descriptive name is added to the dictionary.

A formula that does not have this objectionable property

for any data base is called definite.

The formal definition is as follows. We first develop

the notion for a given data base D.

Definition. Given a data base D and a formula s on

D, we define s to be semi-definite with respect to D by

means of the following ZogicaZ test procedure: Calculate

the value set of s, call it w(s). Form a "pseudo" data

base D, by adding a new descriptive name, say '*', to the

dictionary of D (this, of course, leaves the file unchanged).

Calculate w*(s), i.e., the value set of s on D.. If

W = W(S)

then we say s is semi-definite on D.

Finally, so that definitude is a logical property,

i.e., independent of any particular data base, we define:

_ j
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Definition. s is definite if and only if a is semi-

definite on every data base.

For example, let s be the formula

Bc. (xWc) (22)

This is semi-definite on our example data base because

w('Bc') - 0, and hence

w*(s) = w(s) - the null set

On the other hand, (22) is not definite because, in a world

where Bc was the case, '*' would belong to w,(s)' i.e.,

W*,(S) - W(S) U ('*1}

Let us next turn to the problem of characterizing the

definite formulas. The first result is that atomic formulas,

i.e., those without operators, are definite. (Note that the

atomic formulas include both the sentences in the file and

those sentential formulas with variables whose value sets

can be determined by a direct match with file items--the

value set given by the sequence of variable replacements

that produce the match.)

Consider then formulas with operators--the molecular

formulas. An inventory of the operators is as follows:

the singuZary operators are the signs for negation (n),

existential quantification ((Sx)), and universal quantifica-

tion ((Vx)); the binary operators are the signs for con-

J'lnction (.), disjunction (V), implication (Z), equivalence

I .... .......
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(-), and for reasons to be given later we also :nclude

aspecial operator for the negation of implication (-).

(This last operator can be read 'but not'; it is equivalent

to the combination '."'.) A sentential formula then has

either one or two components depending on whether the major

operator is singulary or binary.

Let us now characterize the definitude of formulas

with definite components. The first step is to calculate

the free variabZe set of the components. The free variable

set of an atomic formula is simply the set of distinct

variables occurring in it (without regard for their order);

that of a binary formula is the set union of the free vari-

able sets of the components, that of a negation is the same

as that of the component; and finally, the free variable set

of a quantification is the free variable set of the component

less the quantified variable. A formula is of degree zero

if and only if its free variable set is null.

Let 0(r), O(s) be the free variable sets of the sen-

tential formulas r and s, respectively. We have the following:

Characterization Theorem. If r and s are definite, then;

a. (ax) (r) and (r).(s) are definite

b. If r.s) $ *(r), then (r)-(s) is definite

c. If $(r) = 4(s), then (r)V(s) is definite

d. If (r) = *(s) - the null set, then (r),

(r)D(s), and (r)-(s) are definite.
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Thus the free variable sets lead to certain ufficient

conditions for definitude. We next have a companion theorem

on neceesary conditions.

Theorem. The conditions listed in the characterization

theorem are necessary for definitude with the following

additional provisions:

a. For (r)-(s) providing r is not contradictory

b. For (r)V(s) providing neither r nor s is

contradictory

C. For (r)D(s), providing r is not a tautology

d. For (r)=(s), providing neither r nor s is a

tautology.

(It turns out that the additional provisions are

logically interesting for it has been shown by Di Paola

(1968) that the class of definite formulas is not recursive.)

How do we apply the characterization theorem? If the

free variable conditions are met, then the value sets can

be calculated in terms of the value sets of the components.

The specific rules for doing this are given in Kuhns (1967,

pp. 67-80).12 From a standpoint of machine processing,

therefore, the most desirable type of formula is one that

is definite in everv part of its structure. This class

of formulas we will call proper. More precisely, a formula

is proper if 1) it is atomic (and hence definite), or 2) it
(I

is definite and its components are proper. Thr characLer-

ization theorem and its companion theorem can therefore he

read with 'proper' replacing 'definite'.

i
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But what of formulas that are difinite but improper?

Consider for example the natural-language question:

Are all of the punlications of Reichenbach books? (23)

We can symbolize this as

(yx) (aWx BDx) (24)

Now the component of this formula is indefinite because

any substitution for 'x' that makes the antecedent 'aWx'

false makes the implication true. On the other hand, the

entire formula is definite. This can be seen by eliminating

the universal quantifier; i.e., (24) is equivalent to

" (2x) (aWx - Bx) (25)

and this is definite by parts (b), (a), and (d) of the

?characterization theorem.

The problem now arises: Is it possible to transform

a definite but improper formula into proper form? If 4t

can be so transformed, we say it is admieeibZe.13 We have

proved (Kuhns, 1967, pp. 92-95) that every definite formula

without quantifiers is indeed admissible. We have also

shown the admissibility of certain special, but nevertheless

important, universal formulas. However, the general ad-

missibility of definite formulas is an open question.

6. A Concluding Remark

We believe that automatic question answering provides

a fertile field for applied logic. We have seen how notions
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in logic can be applied to the analysis of natural-language

questions and to the design of data bases. We have also

seen how the information systems themselves involve new and

interesting concepts which lead to problems of both theoretic

and practical importance.

fL



-28-

ACKNOWLEDGMENTS

I wish to thank my colleagues at RAND for their help

in this work. In particular, my thanks go to N. D. Coher,

J. Economos, R. E. Levien (Project Leader for the Rela-

tional Data File Project), G. Levitt, M. E. Maron (formerly

of RAND and former project co-leader), and G. R. Martins,

who reviewed the manuscript of this paper.



-29-

FOOTNOTES

1. In the actual file this data line is also stored in

relational form, i.e., as a logical relation between

a thing and a property (class). Thus the stored data

line would be similar to (5').

2. The meaning of 'What' depends on the kind of question

in which it occurs. Thus in question (1) 'What' has

an extensional connotation--it asks for an inventory.

However, in a question such as 'What is an apple?', it

asks for an intension (see §4).

3. A more efficient procedure for evaluation is to process

the symbolic question after first transforming away the

domain restriction and converse; i.e., to process

Bx.aWx

and hence to "intersect" two columnar arrays.

4. Note that the co-authorship relation is symmetric. The

introduction of the converse in the computer analysis

(line 5 of Fig. 6) is therefore redundant; it is

necessary however from the linguistic structure of the

question and the generality of Rule 15. To see this

replace 'co-author with' by 'study under'. Line 7 of

Fig. 6 could then be interpreted as 'Whitehead taught

Russell'.

5. For a more detailed discussion of the ideas in this

section see Kuhns, 1967.
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6. From this point on we will consider formulas to be

without special operators; that is, we suppose that

restrictions of domain, converses, relative products,

etc., have been eliminated through definitions (e.g.,

(8), (9), (10)).

7. If a formula is of a degree greater than one, each

member of t.ie value set will be a eequenoe of descriptive

names, the length of the sequence corresponding to the

degree.

8. Thus, for (17), the predicate would be formed by apply-

ing the X-operator (see Carnap, 1956, p. 3) or be given

directly by 'B ll '.

9. Remarks on the subject of questions which are of particular

interest for our purposes are to be found in Carnap (1937,

p. 296); Reichenbach (1947, pp. 339-342), Jesperson (1965,

p. 303). Remarks on the notion of "giving an extension"

are to be found in Carnap (1956, p. 82).

10. We use 'explicate' in the technical sense of Carnap

(1956, p. 8).

11. By 'contradictory' we mean a formula wh4  is either

false on every data base (if of degree zero) or has a

null value set on every data base (if of degree greater

than zero). By 'tautology' we mean a sentence which is

true on every data base.

12. The characterization theorem identifies four classes of

situations regarding free variable sets. In the computa-

tion rules for binary formulas these situations,
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corresponding to parts a, b, c, and d of the theorem,

lead to four kinds of procedures. We term these

cartesian (only for '.'), restrictive 'for 1.' and '-'),

set (for '', -, IV; corresponding to set inter-

section, difference, and union, respectively), and

boolean arithmetic (for all binary operators and

negation).

13. The example (25) uses the operator '- this is why it

was introduced---to widen the class of proper formulas.

*1-
I-
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